

r

The work reported in this document was performed at Lincoln Laboratory, a center

for research operated by Massachusetts Institute of Technology. This work was
sponsored by the Defense Advanced Research Projects Agency under Air Force
Contract F19628-80-C-0002 (ARPA Order 3797).

This report may be reproduced to satisfy needs of U.S. Government agencies.

I

The views and conclusions contained in this document are those of the contractor and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the United States Government.

The Public Affairs Office has reviewed this report, and it is
releasable to the National Technical Information Service,
where it will be available to the general public, including

foreign nationals.

This tec'. ucal report has been reviewed and is approved for publication.

4FOR THE COMMANDER

Thomas J. Alpert, Major, USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

L. ___...

ESD-TR-82-087

ERRATA SHEET

for

TECHNICAL REPORT 622

An error has been detected in Figure 2 (page 6) of MIT/LL Technical Report-622 ("LBS - Lincoln Boolean
Synthesizer." by J.R. Southard, A. Domic, and K.W. Crouch, dated I September 1982). Please insert the attached,
corrected version of Figure 2 into your copy of that report.

The views and conclusions contained in this document are those of the contractor and
should not be interpreted as necessarily representing the official policies, either expressed or
implied, of the United States Government.

The Public Affairs Office has reviewed this report, and it is
releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

Approved for public release; distribution unlimited.

21 September 1982 Publications
M.I.T. Lincoln Laboratory
P.O. Box 73
Lexington. MA 02173-0073

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

LBS - LINCOLN BOOLEAN SYNTHESIZER

I.&. SOUTHARD
A. DOMIC

I.W. CROUCH

Gm.2

Aecession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justification

By
QDistribution/

Availability Codes
Avall and/or

Dist special

TECHNICAL REPORT W2

I SEPTEMER 1982

*Original conitains aqlOw
plates: All DTIC reprodu1
ions will be S 4160 NA

ibitO'

Appmed So pu ic reksed, d abutm mlmild.

LEXINGTON MASSACHUSETTS

." .. " . " • ' . ., : ..- o..o . -. -. .. . _., . . " - :. ... " - " - .

ABSTRACT

The Lincoln Boolean Synthesizer (LBS) creates custom integrated circuits

from boolean logic equations. The currently supported integration technology

is a fully customizable CMOS process with 5 micron channel width, P-tub and,

one level of metal. This document describes the capabilities of LBS and

provides essential information for operating LBS and an LBS simulator which

has also been developed.,

iii

TABLE OF CONTENTS

ABSTRACT

CONTENTS v

1. INTRODUCTION 1

2. LBS SPECIFICATION 1

2.1 Boolean Expressions 1

2.2 Outputs and Internals 2

2.3 Observation on Efficiency 2

3. INTERFACE TO THE OUTSIDE WORLD 3

4. THE NAME OPERATOR 3

5. AN EXAMPLE 4

6. OPERATION 4

7. SIMULATOR 7

REFERENCES

v

1. INTRODUCTION

The Lincoln Boolean Synthesizer (LBS) creates custom integrated circuits

from boolean logic equations. The currently supported integration technology

is a fully customizable CMOS process with 5 micron channel width, P-tub and,

one level of metal. A simulator is provided.
1

2. LBS SPECIFICATION

An LBS specification consists of a set of boolean logic equations called

0 a "network." The network will specify input, output, and logic. Network

inputs and outputs are so-called "named" items. As such, they can be simply

referenced in the logic specification. Network inputs are driven by external

circuitry and network outputs drive external circuitry. When an LBS

generated circuit is fabricated, inputs and outputs will be bonded to leads

of the chip.

2.1 Boolean Expressions

The backbone of LBS specifications is the boolean expression. A boolean

expression consists of an operation and a list of arguments, viz:

(or a b)

This expression will construct circuitry (called a "gate") to or the items

named a and b . Other supported operators are nor, and, nand, not,

and xor. Arguments may be named items such as network inputs, or they may be

other expressions, viz:

(or a (or c)).

1 An up-to-date copy of this document is available on the Lincoln Laboratory

RVLSI VAX computer as /usr/local/doc/lbs.

Z .. ." '. , ' "_ ',i " " " '- - ' - .. . d: . .- i ..- . --. md -- .m -J -- m --

In this case a gate will be constructed to evaluate the xor of c and d.

Another gate will or that result with a. There is no practical limit to this

nesting or cascading of operations. Incidentally, all the operators

except not accept any number of arguments, not just two.

2.2 Outputs and Internals

The results of boolean expressions can be named as an output of the net-

work:

(out a (or b c))

This creates a network output named a which is attached to the gate evaluat-

ing the or of b and c. Note that since it is an output, a is a named value

and can be used as such in other logic expressions.

Sometimes it is useful to create a named value which is neither an input

nor an output of the network. This name will be referenced internally, some-

what like a local variable in a subroutine.

(setq a (or b c))

creates a named value which is neither input nor output but can be used in

other logic expressions as though it was.

2.3 Observation on Efficiency

Let us consider the two networks:

((setq teup (nor a b))
(out ol (or temp c))
(out o2 (xor tem d)))

and

((out ol (zor (nor a b) c))
(out o2 (xor (nor a b) d)))

2

Logically these are equivalent; however, it would seem that by using temp the

first specification creates 3 gates (two xors and one nor), while the second

specification creates 4 gates (two xors and two nors). There is an interest-

ing analogy here between this IC design example and simi" Ir controversy

between standard procedural languages and the so-called "applicative" or

"functional" languages. What actually happens is that LBS

works a little harder on the second specification, detects that two identi-

d cal nor gates are being called for, and generates the same layout for both

specifications.

3. INTERFACE TO THE THE OUTSIDE WORLD

In the present version of LBS, input and output leads will appear on

opposite sides of the chip. The order of the inputs and outputs both depend

on their order or appearance in the specification. Inputs can be ordered

independently of their appearance in out and setq equations by use of an

expression containing only the input name. For example, the network

((out bnorc (nor b e))
(out nota (not a)))

would order the inputs b, c, and a. However, the network

(a
b
C
(out bnorc (nor b c))
(out nota (not a)))

would order the inputs a, b, and c. There would be no difference in the num-

ber of gates.

4. THE NAME OPERATOR

The obsolete operator naum is supported for historical reasons. It is

documented so that very old examples may be understood. Anywhere that a

"named" item appears in a boolean expression a name expression can be

substituted. For example:

(or a (xor c d))

Is equivalent to

(or (name a) (xor (name c) (name d)))

5. AN EXAMPLE

The following code creates a master-slave flip-flop.

((aetq mwl (nor (and (not Inl) phla) oulbar clear))
(setq oalbar (nor (and Inl phia) oml))
(out oll (nor (and omlbar phdb) oslbar clear))
(setq olbar (nor (and owl phlb) osl))
(setq phla (nor clock phlb

(and omlbar pb1b)
(and oal phlb)))

(setq phdb (nor (not dock) phia
(and (not inl) phia)
(and i1 phda))))

The equivalent logic diagram is Fig. 1. A two phase clock is generated

internally from the single clock input. The master flip-flop tracks the

input during phla, and is fixed during phdb. The slave is fixed

during phla, and transfers the output of the master during phdb. The

circuit which internally generates two phase clock (phia and phdb) was

synthesized by writing down the logic expression for figure 7.7 in

Introduction to VLSI Systems by Mead and Conway [1]. Figure 2 is the

resultant layout.

6. OPERATION

Make sure that your $path includes /usr/vlsi/bin. If you do not under-

stand this, please contact someone who knows something about UNIX. Create

4

06 W
0 10

LU

N

'.I

.0
100

4-4

0 W

44

0)

0O

the specification in a file <file-name>.lbs. Issue the command

lb. <file-nain>

This will create a cif file <file-name>.cif which can then be operated on by

the standard cif oriented tools (node extractors, rules checkers, display

programs, etc.). It will also create a file <file-name>.stat with informa-

tion about the number of gates and so on. If you wish to invoke the simu-

lator, issue the command:

lb. <file-nam> sie

If you wish to simulate a design without creating cif, issue the command:

lb. Oile-nam> 613 nocif

7. THE SIMULATOR

A simulator has been written for use with smart terminals like the

Concept lOOs. When invoked, the simulator will clear the screen and present

the input and output signals on the screen. Named input signals appear in

the left-hand column, named output signals appear in the right-hand column.

Next to each signal name is its current value, initially unknown. A long

prompt will appear at the bottom of the screen. When the cursor is next to

the prompt ">', you may enter a command.

Useful commands are:

q Quit the simulator.

I Read the remainder of the line for name arguments (see next
paragraph). All the specified signals will be set to the
value 1. If the simulation is in autopropagate mode
(default, also see the P command), then the display will be
updated as per the new values.

o Read the remainder of the line for name arguments (see next

paragraph). All the specified signals will be set to the
value 0. If the simulation is in autopropagate mode

7

",K _ . - . _ ' . - . , - . ." o . -

(default, also see the P command), then the display will be
updated as per the new values.

z Read the remainder of the line for arguments (see next
paragraph). All the specified signals will be undefined
(hi-impedance, hence z). If the simulation is in
autopropagate mode (default, also see the P command),
then the display will be updated as per the new values.

p Propagate the input signals to the output. This will occur

irrespective, and without effecting, the autopropagate mode
(see the P command).

P Toggle the autopropagate mode. If the autopropagate mode is
on, then each change to an input will be immediately
reflected in the display. If the autopropagate mode is off,
then propagation is delayed (and the display is frozen)
until a p command is issued.

T Toggle the trace mode. When the trace mode is on, the display
presents intermediate value information as signals propagate
through the network. Trace mode assumes unit gate delay for
all gates, a poor, though simple assumption. The trace mode
is Initially off.

4 Save the current simulation state in the file
<file-name>.sim. If the user appends an argument to the s
command, the current simulation state is saved in
<argument>.sim.

X Get the simulation state from the file Ofile-name>.sim. If
the user appends an argument to the g command, the
simulation state is loaded from the file (argument>.sim.

The name arguments are any named input or output signals appearing in

the display. In addition, an argument of I will be expanded to all input

signals, and 0 to all ouput signals. These letters (and G and A) are not

recommended signal names. In addition, other commands and information are

available to LBS experts.

8

REFERENCES

111 C. Mead and L. Conway, "Introduction to VLSI System," (Addison-Wesley,
1980).

(2J J. M. Siskind, J. R. Southard, and K. W. Crouch, "Generating Custom High
Performance VLSI Designs from Succinct Algorithmic Descriptions," Proc.
Conference on Advanced Research in VLSI, January 1982.

(31 A. Weinberger, "Large Scale Integration of 1OS Complex Logic: A Layout
Method," IEEE JSSC, SC-2, pp. 182-190, December 1967.

"4

|9

UNCLASSIFIED

mCU1rv CLAASNWTMo OF TWe PAW On Dow E..aw.

EPORT DOCUMENTATION PAGE ______ _ ST_ _o

1. EpI I L S1VTlMC.U L & . IEIPUUTr CATNO l

ESD.TR42067 9

Technical Report
LBS - Lincoln Boolean Synthesizer

Technical Report 622
7. AhITNSS(I/ a. CSUIMCTi Ml II M UUS(0

Jay R. Southard, Antun Domic, and Kenneth W. Crouch F19626*Z.0002

IL ppmamlI ummEmT. I AaIIg It PlUM ELET. PSUIC. TAM
Lincoln Laboratory, M.I.T. ma • vi i
P.O. Box 73 Proj. No. 2D30

MAo Prog. Element No. 61101E
Lexington, MA 02173-0073 ARPA Order No. 3797

11. CIUTEWES SPUME AN - IL EMIT SAW
Defense Advanced Research Projects Agency I September 1982
1400 Wilson Boulevard I& a OF u u H

Arlington, VA 22209 16
It I f1 -1 A - M &A (5dWfmaafrom C~u& Ak0AuOjite IL EUT CUSS.M (ofarwpr

Electronic Systems Division Unclassified

Hanscom AFB, MA 01731 ii secIAsnl O•nuams cIN

Ia U STA11MT (o "i ReFp-

Approved for public release; distribution unlimited.

17. UISVUIIU STA1TIEET (of do w .aa sud I Bie & IS, I ev sVmff mm Re.p.

18. UPPFIUTAIY 5

None

It f WMY S (..adi. omr wn. &-if mer cad ldsmf by 66se ,unum)

Silicon Compiler VLSI IC Synthesis Boolean Logic Layout

A. AhhiMfT (Cecil.. on nwm A&e Ifncmmy and kdsuft by Sleek .umbe,)

The Lincoln Boolean Synthesizer (LBS) creates custom integrated circuits from boolean logic
equations. The currently supported integration technology is a fully customizable CMOS process
with S micron channel width, P.tub and, one level of metal. This document describes the capabilities
of LBS and provides essential information for operating LBS and an LBS simulator which has also
been developed.

00 IS 1473 iomm 9F I onv a III ONu UNCLASSIFIED
I Jsa 73Ifecum I.WCTM (W "a Pass IWA.. Dom. 5M1

